Logspace Reducibility: Models and Equivalences
نویسندگان
چکیده
We study the relative computational power of logspace reduction models. In particular , we study the relationships between one-way and two-way oracle tapes, resetting of the oracle head, and blanking of the oracle tape. We show that oracle models letting information persist between queries can be quite powerful, even if the information is not readable by the querying machine. We show that logspace f(n)-Turing reductions are stronger than polynomial-time f(n)-Turing reductions when f(n) = !(log n), and that this is optimal if P = L.
منابع مشابه
On Truth-Table Reducibility to SAT
We show that polynomial time truth-table reducibility via Boolean circuits to SAT is the same as logspace truth-table reducibility via Boolean formulas to SAT and the same as logspace Turing reducibility to SAT. In addition, we prove that a constant number of rounds of parallel queries to SAT is equivalent to one round of parallel queries. We give an oracle relative to which ∆p2 is not equal to...
متن کاملReducibility of Self-homotopy Equivalences
We describe a new general method for the computation of the group Aut(X) of self-homotopy equivalences of a space. It is based on the decomposition of Aut(X) induced by a factorization of X into a product of simpler spaces. Normally, such decompositions require assumptions (’induced equivalence property’, ’diagonalizability’), which are strongly restrictive and hard to check. In this paper we d...
متن کاملRelationships Among PL, #L, and the Determinant
Recent results by Toda, Vinay, Damm, and Valiant have shown that the complexity of the determinant is characterized by the complexity of counting the number of accepting computations of a nondeterministic logspace-bounded machine. (This class of functions is known as #L.) By using that characterization and by establishing a few elementary closure properties, we give a very simple proof of a the...
متن کاملOn the reducibility of sets inside NP to sets with low information content
We study whether sets inside NP can be reduced to sets with low information content but possibly still high computational complexity. Examples of sets with low information content are tally sets, sparse sets, P-selective sets and membership comparable sets. For the graph automorphism and isomorphism problems GA and GI, for the directed graph reachability problem GAP, for the determinant functio...
متن کاملOn the Circuit Complexity of Random Generation Problems for Regular and Context-Free Languages
We study the circuit complexity of generating at random a word of length n from a given language under uniform distribution. We prove that, for every language accepted in polynomial time by 1-NAuxPDA of polynomially bounded ambiguity, the problem is solvable by a logspace-uniform family of probabilistic boolean circuits of polynomial size and O(log2 n) depth. Using a suitable notion of reducibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Found. Comput. Sci.
دوره 8 شماره
صفحات -
تاریخ انتشار 1997